44 DIFFUSE DOUBLE DIFFRACTION OF X-RAYS

larization factor for double diffraction with one mono-
chromator is therefore:

P(&1,£5,0,0m) = {O(cos2y + sin2y cos2&,)
+ cos2& (sin2y + cos2y cos2&,)
+ (1 — Q)cos?p(cos?y sinZy cos?E, —sinZy cos?é,

—cos?y cos?&; cos?Ey)}/2 . (49)

Including the effect of the second monochromator
yields:
P(£1,£,,0,011) =[D{cos2y cos?y +sin2y sin2y cos?&,}
+ B[cos?y sin2y cos?&) +sin2y cosZy cos? cos2E,)
+ O{D[sin2y cos?y + cos2y sin2y cos2&,]
+ B[sin?y sin?y cos2£; + cosy cos?y cos?E; cos?és)}]/2
410)
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Where: D=0+(1-Q)cos?p
B=1~(1-Q)cos?p.
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Theory of X-Ray Diffraction In Crystals With Stacking Faults
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X-ray diffraction in a crystal with stacking disorder is studied theoretically. It is assumed that the layers
are identical and equidistant. If a5 is the stacking direction, diffraction occurs when the scattering vector
s satisfies the condition s =2z[H\b; + yb,+ H3bs], where H,, H; are integers, but y may have any value.
As to intensity of scattering, the observable quantity is the integrated intensity Pu,#;(»), and the de-
tailed expression for this function is deduced. For an ordered crystal the integrated intensity is invariant
under the symmetry operations of the crystal as applied to the indices H, H- H3, but this is not true
in general of Pr,u3(y). Thus Puyny(y) # Puyay(—y) when by is the normal to a mirror plane. It is shown
how the precise nature of the stacking disorder can be deduced by means of a detailed analysis of the

experimental curves Puw3(3).

Introduction

A structure study of a single crystal of §-Ca(BO,), was
recently begun by the writer. The crystal is ortho-
rhombic with periods a;=8:369 + 0-001, a,=13-816+
0-001, @;=5-007+0-001 A; but the X-ray diffraction
patterns are unusual. Diffraction occurs for integral
values of the Miller indices H; and H;, and when H,;
is even also for integral values of H,. However, dif-
fraction takes place for any value y of the second index
when H; is odd. In other words, the diffraction condi-
tions are those of a three-dimensional lattice if Hj is
even, those of a two-dimensional lattice if H; is odd.
The diffraction vectors s are thus of the form

Hj even: s=2xr[Hb, + H,b, + H;bs]
H3 odd: S=27I[H1b1 +yb2+H3b3] (1)
where y may have any value.

Extensive integrated intensity measurements have
been made for zones [H,; yH,] with H; odd, using both
Cu Ko radiation with a ‘normal beam’ counter spec-
trometer and Mo K« radiation with a ‘goniostat’ spec-
trometer. As an illustration Table 1 shows the meas-
ured values of the integrated intensity Pm,as(y) for
the reciprocal lattice row [2y1] at intervals of 0-1 for
y over the range —9 <y < +9. Intensity maxima occur
at integral and half-integral values of y, but about
eighty per cent of the scattering is in the background
between the maxima. The most remarkable feature of
Table 1 is the experimental fact that the integrated
intensities Pu r3(y) and Pp,us(p) are different. The
symmetry of the crystal being centrosymmetric ortho-
rhombic, one has |Fu,wus(¥)|=|Fru;(P)|, and it is,
therefore, startling to find that the integrated intensity
is not invariant under the symmetry operations of the
crystal.
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The observed diffraction geometry as expressed in
equation (1) is explained by stacking disorder in the
a, direction with a choice between displacements A and
A +4a; normal to a,.

The X-ray diffraction effects in a crystal with stack-
ing disorder have been studied theoretically by several
workers, and the expression for the scattered intensity
Jua3(y) as function of position in the reciprocal lat-
tice has been derived. This function does exhibit the
symmetry of the crystal, and hence does not explain the
lack of symmetry in the experimental data of Table 1.

Experimentally one does not measure Ju, m3(y), but
the integrated intensity function Py, g;(y) which repre-
sents the total power of the diffracted beam entering
the counter with a convergent beam incident on the
crystal. A detailed interpretation of experimental data
requires a knowledge of the dependence of Py, u;(y) on
J iy H3(p), but this relationship has not been established.

It is the purpose of the present paper to derive the
general expression for the integrated intensity function
Pruay(y). For the sake of completeness the formula
for the intensity distribution in the reciprocal lattice,
Ju1H3(y), will be derived again.

In a subsequent paper the theoretical results of the
present article will be applied to the specific case of
B-Ca(BOy,),, and it will be shown that all experimental
data [including the difference between Pg,u;(y) and
Py a3(p)] are in quantitative agreement with theory.

45

Theintensity distributionin the reciprocallattice, J 7, z;(y)

The atomic positions in a crystal with stacking faults
in the a, direction are of the form r;+La,+ L,a,+
L;a;+Ap,, where Az, is not periodic in L,. It will be
assumed that the layers are stacked equidistantly, i.e.
that Az, . b,=0. As to the shape of the crystal, it is
convenient to set 0 < L; < N;— 1 with N; a larger integer.
The volume of the crystal, dV, is thus 6V =N,N,N,V
with V'=a, . a, x a; the volume of the unit cell.

Imagine a plane wave of X-rays with propagation
direction wu, incident upon the crystal and consider a
scattering direction u, so that s=2nA-1(u—up) is the
scattering vector. In the kinematical approximation the
intensity of the scattered X-rays is

1(8)=L|F|?$,5| T2 . @

I.=Iy(e?/mc2R)?p, with p the polarization factor, is the
J.J. Thomson scattering for a single electron. F=

2 fiexp(is.ry), and the symbols S; and T have the
following meanings:

Si=sin2(3Nys . ag)/sin2(3s . a;), (2a)
Ny—1
T= 40‘? explis . (L,a;+AL,)] . (2b)

If s . Az, is periodic in L, (which is possible for some
values of s even though Az, is not periodic) with period
K, it is convenient to introduce a new vector a;= Ka,.

Table 1. Integrated intensities,* Py (y) and Py ())

y Pu(y)  Pa(y) y Pu(y) Pa(p) y Py(y) Py (p)

0 13 13 3.0 560 459 60 1474 926
0-1 15 18 31 269 221 6-1 1178 571
02 20 19 32 193 151 62 979 501
03 22 28 33 150 127 63 931 456
0-4 33 31 34 115 98 64 966 499
0-5 39 42 35 97 74 65 1146 581
0-6 57 54 36 55 45 66 1127 550
0-7 57 63 37 36 31 67 1063 510
0-8 78 79 3-8 27 20 6-8 1146 535
0-9 123 118 39 16 11 6-9 1364 649
1-0 281 277 4-0 7 6 70 1914 990
1-1 172 159 4-1 9 6 7-1 1531 617
1-2 175 172 4-2 10 16 72 1156 479
1-3 186 179 4-3 26 23 7-3 956 410
1-4 225 215 4-5 49 34 7-4 896 399
1-5 273 262 4-4 98 67 7-5 873 387
1-6 259 234 4-6 122 83 7-6 742 318
17 278 251 47 142 106 7-7 652 262
1-8 318 292 4-8 199 135 7-8 638 246
19 393 369 49 311 209 79 698 258
2-0 787 711 5-0 609 436 8-0 741 335
2-1 436 374 5.1 479 293 8-1 582 181
2:2 369 320 52 475 279 8-2 370 134
23 347 301 53 463 290 8-3 273 99
2:4 351 301 54 545 340 84 208 74
2:5 407 363 55 678 406 8-5 150 57
2:6 354 300 56 640 378 86 118 44
27 309 269 57 638 373 87 73 27
2-8 320 274 5-8 735 440 8-8 34 14
29 353 301 59 914 538 89 18 8
30 560 459 60 1474 926 9-0 12 5

* The data were obtained with a goniostat spectrometer, using Mo K« radiation, a 2° take-off angle and the balanced-filter

technique.
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Equation (2) then reduces to the familiar expression
for a structure periodic in three dimensions

I(s)=L|F|25152S; (3

with S, and F now referring to the cell a;, a3, a;.
When s . Az, is not periodic in L,, it will be assumed
that the scattering from the crystal specimen under
consideration is the same as for a statistical sample
of the disordered crystal. With this assumption one has

N2—1
|T2=Ny+ Z (N,— M)[Wy exp(iMs . a,)
1
+ Wy exp(—iMs . a,)],
Wa={explis. (AL+m—AL)]) .

The correlation coefficient, Wy, is the expectation
value for the interference of two layers M spacings
apart.

If stacking disorder is present as postulated, no cor-
relation exists between the displacements of layers very
far apart, i.e. Wy #0 only for |M|<N,. Thus equa-
tion (4) may be approximated as follows

|T|2=Ny 2 Wy exp(iMs . a;) ®)

where Wy=1, W_y= Wy, and the summation extends
over positive and negative integers. The basic intensity
expression for the study of the assumed stacking dis-
order is accordingly

I(5)=1,|F|2518;N, 2 Wi exp(iMs . ay) . 6)

The product S;.S; vanishes unless the corresponding
Laue equations are exactly or very nearly satisfied, i.e.
s=2n[H;+¢&)b; + yb,+(H3+¢3)bs] and I(s)=0 unless
les] €1. I(s), regarded as function of position in recip-
rocal space, is thus different from zero only in the
immediate vicinity of the reciprocal lattice rows
IH,yH,], and for a particular row one may set I(s)=
Tuyus(e1,p,€3). The total intensity associated with the
point y on a given row, Ju, m3(»), is given by Juy a3=
§S Ir, made des. Since I, and F are slowly varying func-
tions of s, they can be treated as constants over the
integration range, and one has in consequence

JuiHy(y)=
L Fa ms(0)2V 16V 2 WE s exp(i2aMy), (7)
where Fu,u; and WE1Hs are the values of F and Wy
for S=27I[H1b1 +yb2+H3b3]
The formula for J, #5 given in equation (7) has been
derived before (see e.g. Zachariasen, 1947, 1948). It
can be put in the form

(4a)
(4b)

(Ta)

JuHy=Cp|Fa m31*D a3
where C is a constant and
Dy =2 WEH exp (i2nMYy) .

Dy, 13 is periodic in y with period unity and satisfies
the condition -
\ Damasdy=1. ®)

£

Since p|Fu,m;)? is a slowly varying function of y, it is
in general possible to find both functions |Fg,u;] and
Dy u; once Juy a3 1s known, and accordingly also the
correlation coefficients WE1#s,

It is seen from equation (7) that Jy,#(y) has the
symmetry of the crystal. Specifically one has J#, m;(y) =

Jaya3(P) if |Fryas(D = Faa3(— )l

The integrated intensity, Pr,m3(y)

In experiments a convergent incident beam is used, and
one measures the total power of the diffracted beam
as recorded in the counter.

Let the incident beam and the line focus of the X-ray
tube lie in the horizontal plane with u} the direction
of the central ray of incidence. If the height of the line
focus is neglected, the direction of a neighboring ray
of incidence is uy=uj+ Au,y, where Au, has one degree
of freedom. It is convenient to use a cartesian set of
unit vectors, i, j, k such that i=u and k is vertical.
Then wy=ud+Auy=i+o;j with —44,<a;<34;, 4,
being the total convergence. It will be assumed that
the incident intensity, Iy, is constant over the range of a;.

The diffraction direction u® which corresponds to the
incidence direction u satisfies the condition u®—-ud=
A[H;b; + yb,+ H3bs], and one imagines the counter to
be set so that its axis coincides with such a direction
uo. For a neighboring ray entering the counter the di-
rection is u=u’+ Au, and one has

Au—A“():/‘[[EIbI +82b2+83b3] . (9)

The orientation of the counter can be described by
the two angles y and ¢ which represent the horizontal
and vertical projections of the scattering angle 28. Thus
cos 26 =cos ¥ cos ¢ and

u®=cos ¥ cos pi+sin y cos gj+sin gk

(10)
while the neighboring scattering direction u corre-
sponds to angles ¥+ a,, ¢ +a3. The vector Au— Aug of

equation (9) may hence also be expressed in terms of
the three variables «y, «,, a3 as follows:
Au—Auy= - (o, sin y cos g +a; cos ¥ sin @)i
— (ot —az COS W cOs ¢+ o sin y sin )]
+ o3 cos gk . (11
The total power recorded in the counter is the inte-
grated intensity Pr,m3(y) given by

PHIHs(y>=S S S Inms(eny+enednds,  (12)

where dS= R2? cos ¢ do,dasis an elementary area of the
counter aperture and R is the distance from the crystal.
The integrand is given by equation (6) with

s=2n[(Hy+ &by +(y+&)b + (H3+e3)bs]

If the counter aperture is circular with maximum angu-
lar divergence 4,, one has

—14,<)/o2 cosp+a} <14, .

(13)
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The integral of equation (12) is readily evaluated by
using the Jacobians from equations (9) and (11), and
the result is

R2j3

Vsin y cos ¢ (14)

PH1H3(y)= SJH1H3(y+82)d82.
Let the variable ¢, range from —314y to +34y. If
A4y is so small that Jy, x5 does not change appreciably
over the range, one has
Vot 1.00+ e)des T s 1)y (15)
However, this assumption is not usually valid, so that
the exact expression must be used and this is

S Jor,1(y+ e)der= L Frr . (9)2AyV-16V £ WEpHs

sinntMAdy .
x My exp(i2nMy).

(16)
The detailed formula for the integrated intensity is thus
PH1H3(y) =Io(e?)/(mc2V)2A36 VIFH1H3|2

N 1+cos220 Ay

In the incident beam all directions wy=i+a,;j with
—34, <oy <34, are present. This is indicated in Fig.1
by the two spheres corresponding to the extreme values
uy=1i+14,j. If the counter aperture is wide enough to
admit the entire diffracted beam, then b,4y is simply
the segment of the lattice row lying between the two
spheres as shown in Fig. 1.

However, if the divergence J of the diffracted beam
exceeds the angular divergence 4, of the counter aper-
ture only the fraction 4,/ of the diffracted beam will
enter the counter, and the value of 4y obtained from
Fig.1 must be reduced by this factor.

The function Iy, m,(¢1,y +€2,¢3) is a delta function in
¢; and &;. For the present purpose it is, therefore, justi-
fiable in equation (9) to neglect ¢ and &; relative to
&, and by combination of equation (9) with equation
(11) one finds the following set of equations relating
& to oy, 00, 03

leal I 1
sin i cos ¢ Alb, . wd|

_ Joca] — Jos|
Alby.i+by.kcos ywtan ¢|  Alb,. K| sin y

(19)

where 2|o;| < 4; and 2 |/a3 cos?p+ 03 < 4,.

The divergence J of the diffracted beam associated
with the maximum convergence 4; of the incident
beam is

2 sin ¥ cos @ Dy
, sin nMA X
Digr ()= Wit =i exp2nMy), - (17)
4,
o= ’bz .l

where p=(1+cos226)/2 corresponds to unpolarized
incident radiation. In deriving equation (17) it is as-
sumed that absorption is negligible. However, absorp-
tion effects are readily included. Relative intensity
measurements are usually made, and one may set

Py n(y)=CApL'|Fu 1, Dy s » (18)

where C is a scale factor, 4 is the transmission factor
and L'=4dy/sin y cos ¢ may suitably be called the two-
dimensional Lorentz factor.

The two-dimensional Lorentz factor, L’

In order to apply equation (17) or (18) to experimental
data it is necessary to know the expressions for 4y and
L.

The physical meaning of Ay (which is a function of
y and of the geometry) becomes apparent when one
considers the diffraction condition A-[u—wg]=H;b; +
yb,+ Hsbs in the reciprocal lattice. The value of y in
this relation is determined by the requirement that
lu]=|ug]=1. If the sphere of reflection corresponding
to a direction wug is drawn, A-lu will be the radius vec-
tor to the intersection point of the sphere with the lat-
tice row [H, yH,].

J/(by .icos p+b, .k cos y sin ¢)2+ (b, . ksin y)2.

(20)

[HyH3)

Fig.1. The construction of b4y in the reciprocal lattice. For
simplicity the lattice row [H,yH3)] is assumed to lie in the
plane of the drawing, but in general this is not true.
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Accordingly, the general expressions for 4y and L’
become

Ay Al
’= ’ = 2
o<dr L sin w cosp  Alby . ud| (219)
Y|
6>A2 L'= A y =
sin ¥ cos ¢
42
AY(by.icos p+b,.kcos y sin )2+ (b, . ksin y)2.
©15)

(Suppose that b, is a twofold symmetry axis. Then
|Fr,m,(y)|=|Fr,u,(7)| and the angles y, ¢ are the same
for y and —y. If the diffraction condition is first satis-
fied for [H, yH;] and next for [H, H,], the crystal must
be rotated through an angle 2tan='(b,ydx,0n,) about
the axis Hsa; — H,a;. This rotation transforms the vec-
tor b, into b; having a different orientation in the i, j, k
system and the value of 4y is inevitably altered. Hence
Ay(y)#4y(y) and Py n,(y)# Pu,u,(y), as illustrated
in Table 1).

It is useful to give the specific expressions for L’ and
Ay for the two commonly used counter techniques: the
normal-beam and the goniostat methods. In the former
procedure the counter orientation has two degrees of
freedom, y and ¢, while the crystal orientation is varied
with one degree of freedom, {, representing the angle
of rotation about the fixed vertical axis k.

The goniostat technique provides for one degree of
freedom for the counter, =260 and ¢ =0, while the
crystal has two degrees of freedom, @ and y, such that
26, D, x form a set of Eulerian angles.

The normal beam technique

When this method is used, it is convenient to mount
the crystal either with the disorder axis a, or one of
the other axes vertical. For the sake of convenience
it will be assumed that the crystal axes are orthogonal
so that asf[b;, a;b;=1.

Case A. a)|k.

In this case the angles ¢, 8, ¥ are obtained from the
relations sin g =A4y/a,, sin 6=24/2dy,yx; and cos y=
cos 26/cos ¢.

Substitution in equations (20) and (21) gives 6=
4, sin 26 and

Case B. aj|k.

The angle ¢ is now given by sin ¢ =1H;/a;.
Let the zero point for the angle { be so chosen that
a/li when w=0. Accordingly

by/by=az/a, =i cos(zy —{)+jsin(Gy —{), (23)
d=4, cos(zy —)jcos(Gy +{) . @9
The expression for the angle { is
(=3y—n+9, (25a)
1 —cos 26
= Ja
tan @ = Hay (25¢)

These formulas simplify for the equatorial plane
(H;=0), giving 3y =n=0 and {=®).
From equation (21) one has
Ay _ @4,
siny cosp A cos(y—n+P)cos ¢
Ay _ 0242
sinycosgp Acos(y—D)cos g’

6<A2 L’=

(264)

0>4, L'=

(26b)

According to equation (25¢) the angle @ changes
sign with y and with H;. For the orthorhombic crystal
under consideration one has in consequence

PH1H3(y)=Pﬁng,(.)-))#PHlH;;(.}-;)=PEIH3(y) ’
and if d< 4, for —y as well as y

Py u,(y)/Pr,n,(P) = cos(y—n—|P])/cos(y —n+|D|).

The goniostat technique

In this method ¢=0, y=20, and sin 0=4/2dn, yu..
Suppose the crystal (assumed to be orthorhombic) 1s
mounted with a; along the @ axis. If y <7/2, only pos-
itive values of H; can be obtained. Let the zero point
be so chosen that a|li when 20=0=x=0.

The angle & is then given by equation (25¢) and the
angle y by

sin y=Hydg, yi,/as=HyA[2 ay sin 6 . @7

In terms of the angles 8, @, x the unit vector along
the disorder axis and the divergence ¢ become

s<dy I'=—P ;2.‘1‘ , (22a)
S y cos ¢ s ¢ b,/b,=a,/a,=(cos 8 cos @+sin 0 sin D cos )i
+(sin @ cos @ —cos 0 sin D cos y)j
sody D= @h oy o
sin cosgp  Asin 20 + sin®@sin y k, (28)
S=d, (cos 8 cos @ +sin 6 sin D cos x)?+(sin 26 sin P sin 2)? . 29)

cos 8 cos @ —sin @ sin @ cos x
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Substitution in equation (21) gives

Ay

o<ty I'=g155=
ad,

A(cos @ cos @—sin @ sin @ cos y)

(30a)

dy

W E s sin tMdy SJ'OH
HaHs 2

aMdy mlDHlH; exp(—i2rMy)dy ,
(33)

where, on the left of the equation, 4y is the mean value
over the integration range. Since dy=~A4y(y,), which

Yo

a4,

6>A2 L'=-

(300)

Again one has Py u,(y)=Pg p,(P)# P u,())=
Pz, n,(y), while the result for the integrated intensity
ratio when J < 4, becomes

f{:’_ﬂ;(J’) _ cos 8 cos @+sin 6 sin|P| cos x
Pu u,(») " cos 0 cos @—sin 6 sin|P| cosy

@D

Discussion

The experimental conditions are usually such that
4,>4,. However, even so it is frequently true that
0> 4, implying that equation (215) rather than (21a)
must be used. This situation will arise whenever the
lattice row [H,yH;] is nearly tangent to the sphere of
reflection.

In order to get good resolution in the experimental
curve Py m,(y) it is desirable to have 4y small, particu-
larly when the coefficients W 143 decrease slowly with
increasing |M|, and this suggests the use of small
values for 4,.

The equations obtained for 4y show this quantity
to be nearly independent of wave length for large
values of dm yu,. However, a longer wavelength is
preferable at smaller values of du, yu, since 4y is smal-
ler for the longer wavelength. The use of a longer wave-
length also has the advantage that the scattering angles
are larger with a corresponding gain in the precision
with which the counter and the crystal can be set.

The greater simplicity of the expressions for L’ favors
the ‘normal beam’ over the ‘goniostat’ technique, but
this point is not important if electronic computers are
available.

If the structure of the layer is known, the quantity
ApL'|Fy n,J* on the right side of equation (18) can be
calculated, and hence the function CDy,4,(») can be
obtained from the experimental curve Py u,(y). (It is
obvious, however, that the precision is poor for such
regions of y where Py n, and |Fy g, are small). The
function 4y varies slowly with y and can usually be
treated as a constant over the range y to y+ 1. Accord-
ingly, one has y+1
\ D=1, (32)
which will serve to determine the scale factor C. The
function Dy, g, is thus derived from the experimental
function Py, #,, and by Fourier inversion one has

AC23-4

sin 20~ A}/(cos 0 cos ®+sin 0 sin @ cos y)2+ (sin 20 sin P sin x)?

can be calculated, the various correlation coefficients
W H1Hs can thus be obtained from experiment.

Once the correlation coefficients have been found,
the nature of the stacking disorder can be deduced.
Usually the stacking faults are such that the relative
displacements Ar,+m— A, can assume only a small set
of discrete values A;, where the components of Ay are
simple rational numbers. (As an illustration: in stack-
ings of hexagonal close-packed layers three values are
possible for Ay, namely A; =0, A;=1a; +%a;, A;=—A,).
These discrete values Aj are readily found by observing
the conditions under which three-dimensional rather
than two-dimensional diffraction occurs. (For the
hexagonal example given above the condition is that
Hl - H3 = 3n)

The correlation factor Wy of equation (4b) can be
written in the form

Wu= ;‘pM; exp(is . Ay), (34
J

where pasy is the probability of finding a relative dis-
placement A; between layers M spacings apart. If Aj=

Adxja, + dzsa;y the expression for the observable quan-
tities W #183 becomes

WEIHs = ¥ pars exp{i2alH dx;+ HyA4z5)} ,  (35)
J

and the probabilities pary can thus be found.

When the structure of the layer is unknown, it is
necessary first to find the function |Fy #,|% As a con-
sequence of equations (18) and (32) one has

C y+{rlF d y+i PH1H3 p ¥( ) (34)
Sy_i H H4|*ay Sy—i Apl’ 'y V)
where Y'is a known function obtained from the experi-
mental data. Clearly Y is the first approximation to
the sought function |Fg, g,|2. Further approximations
are readily obtained by expansion in power series, the

second approximation being

|Fo (0P~

Y)Y +D+Y(y-H-2Y(»]. (35)
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