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larization factor for double diffraction with one mono-  
chromator  is therefore: 

P(~I,~2,0,OM) = {Q(cos2z + sin2z c0s2~2) 

+ cosE~l(sin2 Z + cosEx c0s2~2) 

+ (1 -- Q)cosE~o(cosEz sin2z c0s2~1 - sin2z c0s2~2 

- cos2z c0s2~1 c0s2~2))/2. (.49) 

Including the effect of the second monochromator  
yields: 

P(~l,~2,0,OM)=[O{cos2r cos2z + sin27 sin2z c0s2~2} 
+ B[cos2y sin2,z c0s2~1 + sin2y cos2x cos2~l c0s2(2] 

+ Q(D[sin27 cos2z+cos27 sin2z c0s2~2] 

+ B[sin27 sin2x cos2~l + cos2z c0s27 c0s2~1 c0s2~2])]/2 

( a l 0 )  

where: 
D = Q + (1 - Q)cos2~o 
B = 1 - (1 - Q)cos29~. 
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X-ray diffraction in a crystal with stacking disorder is studied theoretically. It is assumed that the layers 
are identical and equidistant. If a2 is the stacking direction, diffraction occurs when the scattering vector 
s satisfies the condition s = 2n[H~bl +yb2 + H3b3], where Hi, Ha are integers, but y may have any value. 
As to intensity of scattering, the observable quantity is the integrated intensity PH1Na(Y), and the de- 
tailed expression for this function is deduced. For an ordered crystal the integrated intensity is invariant 
under the symmetry operations of the crystal as applied to the indices H1H2H3, but this is not true 
in general of PHl n3(Y). Thus Pnl n3(Y):# PnlH3(--Y) when b2 is the normal to a mirror plane. It is shown 
how the precise nature of the stacking disorder can be deduced by means of a detailed analysis of the 
experimental curves PHI~3(Y). 

Introduction 

A structure study of  a single crystal of fl-Ca(BO2)2 was 
recently begun by the writer. The crystal is ortho- 
rhombic  with periods al = 8.369 + 0.001, a2= 13.816 + 
0.001, a3=5 .007_0 .001  A;  but  the X-ray diffraction 
patterns are unusual. Diffraction occurs for integral 
values of the Miller indices/-/1 and/-/3,  and when H3 
is even also for integral values o f / / 2 .  However, dif- 
fraction takes place for any value y of the second index 
w h e n / / 3  is odd. In other words, the diffraction condi- 
tions are those of  a three-dimensional lattice i f / / 3  is 
even, those of a two-dimensional lattice if H3 is odd. 
The diffraction vectors s are thus of the form 

/-/3 even: s = 2rC[Hlbl + H2b2 + n3b3] 
H3 odd: s = 2n[Hlbl +yb2 + n3b3] (1) 

where y may have any value. 

Extensive integrated intensity measurements have 
been made for zones [HlyH3] with H3 odd, using both  
Cu Kct radiation with a 'normal  beam'  counter  spec- 
t rometer  and Mo K~ radiation with a 'goniostat '  spec- 
trometer.  As an illustration Table 1 shows the meas- 
ured values of the integrated intensity P~IH3(Y) for 
the reciprocal lattice row [2yl] at intervals of 0.1 for 
y over the range - 9 < y  < + 9. Intensity maxima occur 
at integral and half-integral values of  y, but about  
eighty per cent of the scattering is in the background 
between the maxima. The most remarkable feature of  
Table 1 is the experimental fact that  the integrated 
intensities PHIH3(Y) and P~qn3(f)  are different. The 
symmetry of the crystal being centrosymmetric ortho- 
rhombic,  one has IFHIH3(Y)I=IFH1H3(P)I, and it is, 
therefore, startling to find that  the integrated intensity 
is not invariant under the symmetry operations of  the 
crystal. 
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The observed diffraction geometry as expressed in 
equat ion (I)  is explained by stacking disorder in the 
aa direction with a choice between displacements A and 
A-1-½a3 normal  to a2. 

The X-ray diffraction effects in a crystal with stack- 
ing disorder have been studied theoretically by several 
workers, and the expression for the scattered intensity 
JHln3(y) as function of position in the reciprocal lat- 
tice has been derived. This function does exhibit the 
symmetry  of  the crystal, and hence does not explain the 
lack of  symmetry in the experimental da ta  of Table 1. 

Experimental ly one does not measure JHIH3(Y), but  
the integrated intensity function PHIH3(Y) which repre- 
sents the total power of  the diffracted beam entering 
the counter  with a convergent beam incident on the 
crystal. A detailed interpretat ion of  experimental da ta  
requires a knowledge of  the dependence of  P n l  H3(Y) on 
Jttl/-/3(Y), but this relationship has not  been established. 

It  is the purpose of  the present paper  to derive the 
general expression for the integrated intensity function 
Phi Ha(Y). For  the sake of  completeness the formula  
for the intensity distribution in the reciprocal lattice, 
Jttln3(Y), will be derived again. 

In a subsequent paper  the theoretical results of  the 
present article will be applied to the specific case of  
fl-Ca(BO2)2, and it will be shown that  all experimental 
da ta  [including the difference between PuIH3(y) and 
Pu,H3(~)] are in quanti tat ive agreement  with theory. 

The intensity distribution in the reciprocal lattice, J ~  ~3(Y) 

The atomic positions in a crystal with stacking faults 
in the a2 direction are of the form r j+Lla~+L2a2+ 
L3a3 q-AL2, where At2 is not periodic in L2. It will be 
assumed that  the layers are stacked equidistantly, i.e. 
that  AL2. b2=0.  As to the shape of  the crystal, it is 
convenient to set 0 < Lt < N t -  1 with Nt a larger integer. 
The volume of the crystal, ~ V, is thus ~ V=  NIN2N3 V 
with V =  a~. a2 × a3 the volume of the unit cell. 

Imagine a plane wave of  X-rays with propagat ion  
direction Uo incident upon the crystal and consider a 
scattering direction u, so that  s=2n2-~(U-Uo)  is the 
scattering vector. In the kinematical  approximat ion  the 
intensity of  the scattered X-rays is 

I(s) = IelFIzS1S31TI 2 . (2) 

Ie = lo(e2/mcZR)2p, with p the polarization factor, is the 
J . J . T h o m s o n  scattering for  a single electron. F =  
2739 exp( i s ,  rj), and the symbols St and T have the 
following meanings:  

S~=sin2(½Nts. a0/sin2(½s, at), (2a) 
N2--1 

T =  Z" exp[ is .  (L2a2 + Ar.2)]. (2b) 
0 

I f  s .  Az2 is periodic in L2 (which is possible for some 
values of  s even though Az2 is not  periodic) with period 
K, it is convenient to introduce a new vector a2= Ka2. 

Y P2t(Y) 
0 13 

0-1 15 
0"2 20 
0"3 22 
0"4 33 
0"5 39 
0"6 57 
0-7 57 
0"8 78 
0-9 123 
1"0 281 
1"1 172 
1"2 175 
1"3 186 
1"4 225 
1-5 273 
1"6 259 
1"7 278 
1"8 318 
1"9 393 
2-0 787 
2"1 436 
2"2 369 
2"3 347 
2"4 351 
2"5 407 
2"6 354 
2"7 309 
2-8 320 
2"9 353 
3"0 560 

Table 1. Integrated intensities,* Pzx(Y) and Pax(Y) 

P21(Y) Y P21(Y) P21(Y) Y P21(Y) P21(Y) 
13 3"0 560 459 6"0 1474 926 
18 3"1 269 221 6"1 1178 571 
19 3"2 193 151 6"2 979 501 
28 3"3 150 127 6"3 931 456 
31 3"4 115 98 6"4 966 499 
42 3"5 97 74 6"5 1146 581 
54 3"6 55 45 6"6 1127 550 
63 3"7 36 31 6"7 1063 510 
79 3"8 27 20 6-8 1146 535 

118 3"9 16 11 6"9 1364 649 
277 4"0 7 6 7"0 1914 990 
159 4"1 9 6 7"1 1531 617 
172 4"2 10 16 7"2 1156 479 
179 4"3 26 23 7-3 956 410 
215 4"5 49 34 7"4 896 399 
262 4"4 98 67 7"5 873 387 
234 4"6 122 83 7"6 742 318 
251 4"7 142 106 7"7 652 262 
292 4"8 199 135 7"8 638 246 
369 4"9 311 209 7"9 698 258 
711 5.0 609 436 8.0 741 335 
374 5"1 479 293 8-1 582 181 
320 5"2 475 279 8"2 370 134 
301 5"3 463 290 8"3 273 99 
301 5"4 545 340 8"4 208 74 
363 5'5 678 406 8-5 150 57 
300 5"6 640 378 8"6 118 44 
269 5"7 638 373 8-7 73 27 
274 5"8 735 440 8"8 34 14 
301 5"9 914 538 8-9 18 8 
459 6"0 1474 926 9"0 12 5 

* The data were obtained with 
technique. 

a goniostat spectrometer, using Mo K~ radiation, a 2 o take-off angle and the balanced-filter 
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Equation (2) then reduces to the familiar expression 
for a structure periodic in three dimensions 

I(s)= IeIFI2S~S2S3 (3) 

with $2 and F now referring to the cell ab a;, a3. 
When s .  At.2 is not periodic in L2, it will be assumed 

that the scattering from the crystal specimen under 
consideration is the same as for a statistical sample 
of the disordered crystal. With this assumption one has 

N2--1 
ITI2=N2+ S ( N 2 - M ) [ W M  exp(iMs . a2) 

1 

+ W~t e x p ( - i M s ,  a2)], (4a) 

WM= (exp[is.  (hr.2+M-- Ar2)]). (4b) 

The correlation coefficient, WM, is the expectation 
value for the interference of two layers M spacings 
apart. 

If stacking disorder is present as postulated, no cor- 
relation exists between the displacements of layers very 
far apart, i.e. WM#O only for [MIEN2. Thus equa- 
tion (4) may be approximated as follows 

I TI z = N2 X WM exp(iMs, a2) (5) 

where W0 = 1, W-M = WM, and the summation extends 
over positive and negative integers. The basic intensity 
expression for the study of the assumed stacking dis- 
order is accordingly 

I(s)=IelFI2S1S3N2 X WM exp(iMs, a2). (6) 

The product S~$3 vanishes unless the corresponding 
Laue equations are exactly or very nearly satisfied, i.e. 
S = 2;re[H1 + ~l)bl + y b 2  + (H3 + ~3)b3] a n d  I (s )  = 0 un less  
le~l'~ 1. I(s), regarded as function of position in recip- 
rocal space, is thus different from zero only in the 
immediate vicinity of the reciprocal lattice rows 
[HlyH3], and for a particular row one may set I ( s )=  
Intn3(el,y, e3). The total intensity associated with the 
point y on a given row, JItlHa(Y), is given by Jnln3 = 
~ li-i1H3d~ld~3 . Since Ie and F are slowly varying func- 
tions of s, they can be treated as constants over the 
integration range, and one has in consequence 

JHtn3(Y) = 
IelFnans(y)12V-tdV X W~ IHs exp(i2rcMy) , (7) 

where Fn~n3 and W~ ~s  are the values of F and Wm 
for s = 2~r[Hmbt +yb2 + H3b3]. 

The formula for Ja~n3 given in equation (7) has been 
derived before (see e.g. Zachariasen, 1947, 1948). It 
can be put in the form 

JH1H3 = CplFzcx//3 I2DH1 n 3 ,  (7a) 

where C is a constant and 

Dn~n3 -- S W~ ~3 exp (i2zcMy). 

D~an3 is periodic in y with period unity and satisfies 
the condition 

l Y+"Dn~nsdy = 1 . (8) 
y 

Since pIFH1Hs[ 2 is a slowly varying function of y, it is 
in general possible to find both functions IFn~Hsl and 
DHIH3 once JHmn3 is known, and accordingly also the 
correlation coefficients W~lns. 

It is seen from equation (7) that JHIHs(Y) has the 
symmetry of the crystal. Specifically one has JH1H3(Y)= 
JHIH3(Y) if [FHIH3(Y)I=IFHIHs(-- y)I. 

The integrated intensity, P8183(Y) 

In experiments a convergent incident beam is used, and 
one measures the total power of the diffracted beam 
as recorded in the counter. 

Let the incident beam and the line focus of the X-ray 
tube lie in the horizontal plane with u ° the direction 
of the central ray of incidence. If the height of the line 
focus is neglected, the direction of a neighboring ray 
of incidence is u0=u°+Au0, where Au0 has one degree 
of freedom. It is convenient to use a cartesian set of 
unit vectors, i, j, k such that i=uo ° and k is vertical. 
Then Uo=u°+Auo=i+cq j  with -½Aa<_oq<_½Ab Aa 
being the total convergence. It will be assumed that 
the incident intensity, I0, is constant over the range ofcq. 

The diffraction direction u 0 which corresponds to the 
incidence direction %0 satisfies the condition uO-uo°= 
2[Hxb~+yb2+H3b3], and one imagines the counter to 
be set so that its axis coincides with such a direction 
u o. For a neighboring ray entering the counter the di- 
rection is u =  u ° + Au, and one has 

Au - Au 0 = 2[/31b 1 +/~262 + e3b3] • (9) 

The orientation of the counter can be described by 
the two angles V and ~p which represent the horizontal 
and vertical projections of the scattering angle 20. Thus 
cos 20= cos ~, cos q~ and 

uO=cos ~, cos ~i+s in  ~, cos ~ j+s in  ok (10) 

while the neighboring scattering direction u corre- 
sponds to angles V + c~2, tp + ~3. The vector A u -  Auo of 
equation (9) may hence also be expressed in terms of 
the three variables em, e2, (x3 as follows: 

A u -  Au0 = - ( 0 c 2  sin ~, cos ~0 + OC 3 COS Iff sin (p)i 
- - ( cq -  c~2 COS V COS (p + ~3 sin V sin ~o)j 
+ ~3 COS ~0k. (11) 

The total power recorded in the counter is the inte- 
grated intensity PH1Ha(Y) given by 

PIttH3(Y) = I Iilttlit3(em,y +e2,e3)dofidS , (12) 

where dS-- R 2 cos ~0 d~Ed~3is an  elementary area of the 
counter aperture and R is the distance from the crystal. 
The integrand is given by equation (6) with 

s =  2zc[(H1 + el)bl + (Y + ~2)b2 + (H3 + e3)b3] • 

If the counter aperture is circular with maximum angu- 
lar divergence A2, one has 

-½A2<_[/-~2cos2q~+~<_½A2. (13) 
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The integral of equation (12) is readily evaluated by 
using the Jacobians from equations (9) and (11), and 
the result is 

R223 
I Jit~ita(Y+ez)de2" (14) Pit,its(Y) = V sin ~ cos ~0 

Let the variable e2 range from -SAy  to +SAy. If 
Ay is so small that JH1H3 does not change appreciably 
over the range, one has 

f JitlH3(Y + e2)de2""Jit~its(y)Ay. (15) 

However, this assumption is not usually valid, so that 
the exact expression must be used and this is 

I JHltt3(Y e2)de2 = ~" W~41H3 + IelFitlit3(Y) 12AyV-1JV 

sin nMAy exp(i2nMy). (16) 
x nMAy 

The detailed formula for the integrated intensity is thus 

PH~ H3(y) = Io(e 2 )/(mc 2 V)22 3¢~ VIFH 1 H312 

1 + cos220 Ay , 
x 2 sin ~ cos (0 DH*us 

D~qHs(y ) = X W~ ~m sin nMAy exp(i2nMy), 
nMAy 

(17) 

In the incident beam all directions uo= i+~ l j  with 
-SAx < ex <SA~ are present. This is indicated in Fig. 1 
by the two spheres corresponding to the extreme values 
u0=i + SAlj. If the counter aperture is wide enough to 
admit the entire diffracted beam, then bzAy is simply 
the segment of the lattice row lying between the two 
spheres as shown in Fig. 1. 

However, if the divergence d of the diffracted beam 
exceeds the angular divergence A2 of the counter aper- 
ture only the fraction Az/O of the diffracted beam will 
enter the counter, and the value of Ay obtained from 
Fig. 1 must be reduced by this factor. 

The function IHIH3(EI,y + e 2 ,  g3) is a delta function in 
el and e3. For the present purpose it is, therefore, justi- 
fiable in equation (9) to neglect el and E 3 relative to 
e2, and by combination of equation (9) with equation 
(11) one finds the following set of equations relating 
E2 t o  t~l, (Z2, t~3: 

lezl I~11 
sin ~ cos ~0 Alb2. u°l 

1~21 10~31 
Alb2. i+b2 .  k cos ~u tan ~01 21b2. kl sin ~, 

where 2lcql _<A1 and 2 Va 2 COS2(,0+t~2<_A2 . 

(19) 

The divergence J of the diffracted beam associated 
with the maximum convergence AI of the incident 
beam is 

0=  ~ V(b2. i c o s  ( p + b 2  • k cos gt sin (0)2+(b2  . k sin /fi¢)2 , (20) 

where p=(1  +cos220)/2 corresponds to unpolarized 
incident radiation. In deriving equation (17) it is as- 
sumed that absorption is negligible. However, absorp- 
tion effects are readily included. Relative intensity 
measurements are usually made, and one may set 

Pit it (y)=CApL'lFit it 12O~ H (18) 1 3 1 3 i 3 '  

where C is a scale factor, A is the transmission factor 
and L '= - Ay/sin ~u cos rp may suitably be called the two- 
dimensional Lorentz factor. 

The two-dimensional Lorentz factor, L' 

In order to apply equation (17) or (18) to experimental 
data it is necessary to know the expressions for Ay and 
L ~" 

The physical meaning of Ay (which is a function of 
y and of the geometry) becomes apparent when one 
considers the diffraction condition 2 -1 [u -u0]=Hlb l+  
yb2+ Hab3 in the reciprocal lattice. The value of y in 
this relation is determined by the requirement that 
lu] = [u0] = 1. If the sphere of reflection corresponding 
to a direction u0 is drawn, 2-1u will be the radius vec- 
tor to the intersection point of the sphere with the lat- 
tice row [HlyHa]. 

Fig. 1. The construction of b2Ay in the reciprocal lattice. For 
simplicity the lattice row [HlyH3] is assumed to lie in the 
plane of the drawing, but in general this is not true. 
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Accordingly, the general expressions for Ay and L' 
become 

Ay AI 
J < A2 L' = - -  - -  - (21a) 

sin ~ cos~o 2[b2. u°l 

(~ > A2 L' = 
Ay 

sin ~ cos ~0 

A2 

2 ~/(b2 • i c o s  ~oq-b2 . k cos ~ sin q9)2-1- (b2 . k sin ~b¢) 2 • 

(21b) 

(Suppose that b2 is a twofold symmetry axis. Then 
IFHa~/3(Y)I = IFHaH3(P)I and the angles g, ~0 are the same 
for y and - y .  If the diffraction condition is first satis- 
fied for [HIyH3] and next for [H~PH3], the crystal must 
be rotated through an angle 2tan-X(b2ydnlOH3) about 
the axis H 3 a l -  Hla3. This rotation transforms the vec- 
tor b2 into b; having a different orientation in the i, j, k 
system and the value of Ay is inevitably altered. Hence 
Ay(y) ~ Ay(~) and PnxH3(y) ~ PH~H307), as illustrated 
in Table 1). 

It is useful to give the specific expressions for L' and 
Ay for the two commonly used counter techniques: the 
normal-beam and the goniostat methods. In the former 
procedure the counter orientation has two degrees of 
freedom, ~ and ~0, while the crystal orientation is varied 
with one degree of freedom, (, representing the angle 
of rotation about the fixed vertical axis k. 

The goniostat technique provides for one degree of 
freedom for the counter, ~u=20 and ~0=0, while the 
crystal has two degrees of freedom, 4 and Z, such that 
20, 4,  X form a set of Eulerian angles. 

The normal beam technique 

Case B. a3l[k. 

The angle (p is now given by sin ~o=2H3/a3. 
Let the zero point for the angle ~ be so chosen that 

a211i when ~u = 0. Accordingly 

bz/b2=a2/a2=i c o s ( ½ ~ - O +  j s i n ( ½ ~ - O ,  (23) 

6=A1 cos(½~'- 0/cos(½g + ( ) .  (24) 

The expression for the angle ( is 

( =  ½g/- r/+ 4 ,  (25a) 

1 - cos 20 
= , (25b) tan r/ sin ~, cos ~o 

tan 4 -  yal Hla2 " (25c) 

These formulas simplify for the equatorial plane 
(H3 = 0), giving ½~/= r/= 0 and ( =  4). 

From equation (21) one has 

(~ < A2 L '= . Ay = a2A1 (26a) 
sin ~t cos ~0 2 c o s ( ~ - r / +  4)cos (p 

J > A2 L '= Ay = a2A2 . (26b) 
sin ~ cos ~0 2 cos(r/- 4)  cos ~0 

According to equation (25c) the angle 4 changes 
sign with y and with Ha. For the orthorhombic crystal 
under consideration one has in consequence 

P~xH3(y) = P~I~3(3 ~) ¢ PHIH3(Y)~- P~aH3(Y), 

and if J < A2 for - y  as well as y 

PHI H3(Y)/PH1H307) = cos ( g - r / -  141)/cos (~,- r/+ 141). 

When this method is used, it is convenient to mount 
the crystal either with the disorder axis a2 or one of 
the other axes vertical. For the sake of convenience 
it will be assumed that the crystal axes are orthogonal 
so that a~llbi, a~bi = 1. 

Case A. a2llk. 
In this case the angles ~0, 0, gt are obtained from the 

relations sin tp=Ay/a2, sin O=2/2dHlun3 and cos ~u= 
cos 20/cos ~0. 

Substitution in equations (20) and (21) gives J =  
A1 sin 20 and 

J<A2 L '=  Ay _ a2A~ , (22a) 
sin ~u cos ~0 2 sin ~0 

J > A2 L' = Ay _ azA2 (22b) 
sin g/cos ~0 2 sin 20 " 

The goniostat technique 

In this method ~o = 0, ~, = 20, and sin 0 = 2/2dHa uH3. 
Suppose the crystal (assumed to be orthorhombic) is 
mounted with a3 along the 4 axis. I f z  < zt/2, only pos- 
itive values of H3 can be obtained. Let the zero point 
be so chosen that a21li when 20= 4 = Z =  0. 

The angle 4 is then given by equation (25e) and the 
angle Y by 

sin Z= H3dH 1 uH3/a3 = H32/2 a3 sin 0.  (27) 

In terms of the angles 0, q~, Z the unit vector along 
the disorder axis and the divergence J become 

b2/b2 = a2/a2 = (cos 0 cos 4 + sin 0 sin 4 cos 2~)i 

+ (sin 0 cos 4 - c o s  0 sin 4 cos z)J 

+ s i n 4 s i n z k ,  (28) 

j=Ax ]//(cos 0 cos 4 + s i n  0 sin 4 cos Z)2+(sin 20 sin 4 sin Z) z 
cos 0 cos 4 - s i n  0 sin 4 cos Z 

(29) 
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Substitution in equation (21) gives 

3<A2 L ' -  Ay _ 
sin 20 

a2A1 
2(cos 0 cos ~b-sin 0 sin # cos Z) 

(30a) 

sin rcMAy .., I yo+½ , W~ln3 
zcMAy - ,., YO_½ DH1H3 e x p ( -  i2rcMy) dy , 

(33) 

where, on the left of the equation, Ay is the mean value 
over the integration range. Since Ay'Ay(yo), which 

C~ > A2 L ' -  
Ay azAz 

sin 20 - 2 ]/(cos 0 cos ~ + s i n  0 sin ~ cos Z)2+(sin 20 sin ~ sin Z) z" (30b) 

Again one has PH~n3(y ) = P~r3(37) ¢ Pnan3(p) = 
P~n3(Y), while the result for the integrated intensity 
ratio when J < Az becomes 

(31) 
PHIn3(Y) cos 0 cos ~ + s i n  0 sinful cosz  
Pnxn307) cos 0 cos J - s i n  0 sinl~l cosz  

Discussion 

The experimental conditions are usually such that 
A2>~AI. However, even so it is frequently true that 
O>A2 implying that equation (21b) rather than (21a) 
must be used. This situation will arise whenever the 
lattice row [HlyH3] is nearly tangent to the sphere of 
reflection. 

In order to get good resolution in the experimental 
curve P/~H3(y ) it is desirable to have Ay small, particu- 
larly when the coefficients W,~ ~n3 decrease slowly with 
increasing [M[, and this suggests the use of small 
values for A~. 

The equations obtained for Ay show this quantity 
to be nearly independent of wave length for large 
values of dttxyH 3. However, a longer wavelength is 
preferable at smaller values of d~q uH 3 since Ay is smal- 
ler for the longer wavelength. The use of a longer wave- 
length also has the advantage that the scattering angles 
are larger with a corresponding gain in the precision 
with which the counter and the crystal can be set. 

The greater simplicity of the expressions for L' favors 
the 'normal beam' over the 'goniostat' technique, but 
this point is not important if electronic computers are 
available. 

If the structure of the layer is known, the quantity 
ApL'IFH1H312 on the right side of equation (18) can be 
calculated, and hence the function CD'~n3(Y) can be 
obtained from the experimental curve Pnln3(y). (It is 
obvious, however, that the precision is poor for such 
regions of y where P~IH 3 and lFn~n3l are small). The 
function Ay varies slowly with y and can usually be 
treated as a constant over the range y to y + 1. Accord- 
ingly, one has y+l • 

ly  = 1 (32) DHIH3 

which will serve to determine the scale factor C. The 
function D ~ 3  is thus derived from the experimental 
function P~IH 3, and by Fourier inversion one has 

can be calculated, the various correlation coefficients 
W~ln3 can thus be obtained from experiment. 

Once the correlation coefficients have been found, 
the nature of the stacking disorder can be deduced. 
Usually the stacking faults are such that the relative 
displacements AL2+M--AL2 can assume only a small set 
of discrete values Aj, where the components of As are 
simple rational numbers. (As an illustration: in stack- 
ings of hexagonal close-packed layers three values are 
possible for A~, namely A1 =0, A2 =-}al +-}a3, A3 = -A2). 
These discrete values A~ are readily found by observing 
the conditions under which three-dimensional rather 
than two-dimensional diffraction occurs. (For the 
hexagonal example given above the condition is that 
H I -  H3= 3n). 

The correlation factor WM of equation (4b) can be 
written in the form 

WM = 22 PMJ exp(is. Aj), (34) 
J 

where PMJ is the probability of finding a relative dis- 
placement Aj between layers M spacings apart. If Aj = 
Axja~ +Azta 3 the expression for the observable quan- 
tities W~tH3 becomes 

W~xH3= .S pMt exp{i2zr[HiAxj+ H3Azj]} , (35) 
J 

and the probabilities pMJ can thus be found. 
When the structure of the layer is unknown, it is 

necessary first to find the function IFnd¢312. As a con- 
sequence of equations (18) and (32) one has 

g y+½y I "v+½ PHIH3 
C _½IFn~HaIZdy= y_½ ApL' dy= Y(y),  (34) 

where Yis a known function obtained from the experi- 
mental data. Clearly Y is the first approximation to 
the sought function ]F~IH3] z. Further approximations 
are readily obtained by expansion in power series, the 
second approximation being 

[Fnxna(y)[2 z 
Y(y)-~[r(y+½)+ Y(y -½) -2Y(y ) ] .  (35) 
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